A facile synthesis of fluoroalkylated chromones and their analogues from 2,2-dihydropolyfluoroalkanoates

Wei-Yuan Huang*, Yan-Song Liu and Long Lu

Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032 (China)

(Received December 1, 1992; accepted April 8, 1993)

Abstract

Fluoroalkylated chromones and their analogues have been prepared in good yield by the Michael addition reactions of 2,2-dihydropolyfluoroalkanoates with phenols in the presence of triethylamine, followed by acid-catalyzed intramolecular ring-closure.

Introduction

The development of new and more efficient methods for the synthesis of fluorine-containing heteroaromatic compounds continue to arouse considerable interest due to their unique biological activities [1-5]. Chromone is a very useful heterocyclic system [6] and some fluorinated chromones have been prepared for medicinal research [7, 8]. Reported preparations of 2-(F-alkyl)substituted chromones have been based on the Claisen condensation reactions of o-hydroxyacetophenones with polyfluoroalkanoates followed by ring-closure [9, 10]. We have recently reported a convenient method for the synthesis of 2-(F-alkyl)-substituted quinolines [11] by the reaction of 2,2-dihydropolyfluoroalkanoates with aromatic amines. In the present paper, the results of the reaction of 2,2-dihydropolyfluoroalkanoates with phenols are reported, providing a new synthetic route to 2-(F-alkyl)-substituted chromones and their analogues.

Results and discussions

As starting materials, 2,2-dihydropolyfluoroalkanoates were readily prepared through the sodium dithionite-initiated addition reaction of a polyfluoroalkyl iodide (R_FI) to ethyl vinyl ether followed by oxidation and esterification [12]. In a similar manner to aromatic amines, phenols 2 reacted with 2,2-dihydropolyfluoroalkanoates 1 in acetonitrile at 60 °C in the presence of triethylamine to give enol ethers 3 in high yield. Only the Z-isomer was obtained in the case of pnitrophenol, *p*-bromophenol and 2,4-dichlorophenol, whilst other phenols produced a mixture of E- and Z-isomers as observed from their ¹H and ¹⁹F NMR spectra.

$$R_{F}CF_{2}CH_{2}CO_{2}Et \xrightarrow{Et_{3}N} R_{F}CF = CHCO_{2}Et \xrightarrow{ArOH} R_{F}CFCH_{2}CO_{2}Et \xrightarrow{Et_{3}N} R_{F}C = CHCO_{2}Et \xrightarrow{O}Ar OAr$$

Cyclization of the fluorinated enol ethers 3 in polyphosphoric acid (PPA) at 170 °C for c. 10 h gave the corresponding 2-(*F*-alkyl)-substituted chromones 4 in good yield. The detailed results are listed in Table 1.

When a *meta*-substituted phenol such as *m*-cresol was used, cyclization gave two isomers in a ratio of nearly 1:1, namely 2-(*F*-alkyl)-5-methyl chromone (**4ck1**) and 2-(*F*-alkyl)-7-methyl chromone (**4ck2**). The two isomers were separated by column chromatography and their structures were assigned on the basis of ¹H NMR spectroscopy. The ¹H NMR absorption of compound

^{*}Author to whom correspondence should be addressed.

^{0022-1139/94/\$07.00 © 1994} Elsevier Sequoia. All rights reserved SSDI 0022-1139(93)02913-Y

Fluorinated esters	Ar-OH				Isolated yield ^a (%)	
		R ₁	R ₂	R ₃	Enol ether (3) ^b	Chromone (4)
1b	2d	Н	Н	H	3bd , 92	4bd , 81
1c	2d	Н	Н	Н	3cd , 92	4cd , 75
1b	2e	Н	Н	Br	3be , 93	4be, 90
1b	2f	Н	Н	NO_2	3bf , 92	4bf, 58
1c	2f	Н	Н	NO_2	3cf , 90	4cf, 64
1a	2g	Н	Н	Me	3ag , 93	4ag , 86
1c	2g	Н	Н	Me	3cg , 84	4cg , 83
1b	2h	Н	Н	Ph	3bh , 88	4bh , 85
1c	2h	Н	Н	Ph	3ch , 84	4ch , 80
1a	2j	Cl	Н	Cl	3aj , 91	4aj , 78
1b	2j	Cl	Н	Cl	3b j, 90	4bj , 71
1c	2k	н	Me	Н	3ck , 92	4ck, 92°
1a	2m	Me	Н	Н	3am , 91	4am , 81
1c	2m	Me	Н	Н	3cm , 88	4cm , 80

TABLE 1. Synthesis of 2-(F-alkyl)-substituted chromones

*Isolated yield after chromatography. All new compounds exhibited correct spectral and elemental analytical data.

^bA mixture of *E*- and *Z*-isomers.

'Total yield of two isomers 4ck1 and 4ck2 in a ratio of 1:1.

4ck1 showed a multiplet at δ 7.03–7.58 ppm for three aromatic protons at positions 6, 7 and 8, while that of compound **4ck2** showed a singlet at δ 7.28 ppm for the aromatic proton at position 8 and an AB pattern centered at δ 8.60 ppm (J_{AB} = 8.0 Hz) for the other two aromatic protons at positions 5 and 6.

 α -Naphthol and β -naphthol underwent similar reactions to give the corresponding enol ethers **5b** and **7a**, **b** corresponding to **3**, Ar =

respectively, which were also converted to cyclization products (**6b** and **8a**, **b**) in overall yields of 80%–90%. Interestingly, cyclization of the derivatives (**7a**, **b**) of β -naphthol occurred only at position 1 [13] to give the compounds **8a** and **8b**, respectively. The ¹H NMR absorptions of compounds **8a** and **8b** showed a doublet at δ 9.85–10.00 ppm for the aromatic proton at position 10 due to the deshielding effect of the carbonyl group.

Under the same conditions, bifunctional nucleophiles such as hydroquinone, *p*-aminophenol, resorcinol, 4,4'biphenol and 4,4'-dihydroxydiphenylpropane reacted with 2 equiv. of 2,2-dihydropolyfluoroalkanoates to give the corresponding polycyclic products (Table 2). Interestingly, cyclization reactions for *p*-aminophenol and resorcinol gave compound **12b** and **14b**, respectively, with an angular structure, while hydroquinone gave the linear product. These structures were also established by the ¹H NMR spectra. For example, the ¹H NMR absorptions of compounds **12b** and **14b** all showed a typical AB pattern for two aromatic protons.

In summary, we have developed a new, efficient synthetic procedure for the preparation of 2-(*F*-alkyl)-substituted chromones and their analogues such as bichromones and bischromones, starting from readily available 2,2-dihydropolyfluoroalkanoates.

Experimental

All melting points were uncorrected. IR spectra were measured with an IR-440 spectrometer, using liquid films. ¹H NMR spectra were recorded on a Varian EM-360A (60 MHz) spectrometer using TMS as internal or external standard and ¹⁹F NMR spectra were recorded on a Varian EM-360L (56.4 MHz) spectrometer using TFA as external standard. The ¹⁹F chemical shifts (in ppm) are positive for upfield shifts and the values reported are related to δ CFCl₃ (δ CFCl₃= δ TFA+76.8). Mass spectra were taken on a GC-MS 4021 spectrometer. The column chromatography was performed using silica gel H, particle size 10–40 μ m.

TABLE 2. Synthesis of fluoroalkylated polycyclic chromones

Phenois	R _F	Product structures and isolated yield*			
Hydroquinone		RF O OEt OEt	RF O C RF		
<i>p</i> -Aminophenol	Cl(CF ₂) ₃	(9b) 90% $ \begin{array}{c} \text{Eto} & & \text{Fto} \\ \text{Eto} & & \text{Fto} \\ \text{R}_{F} & & \text{R}_{H} \\ \text{H} & & \text{R}_{F} \\ \end{array} $	(10b) 85% Ho R_F N R_F		
Resorcinol	Cl(CF ₂) ₃	(11b) 80% R_F R_F (13b) 88%	(12b) 86% R_F O R_F O		
4,4'-Dihydroxy- diphenylpropane ^b	CICF ₂	$\begin{array}{c} \textbf{Eto} & \textbf{Me} & \textbf{Me} & \textbf{OEt} \\ \hline \\ \textbf{Rp} & \textbf{O} & \textbf{O} & \textbf{Rp} \\ \textbf{(15a) 81\%} \\ \textbf{(15c) 93\%} \end{array}$	(16a) 81% (16a) 81%		
4,4'-Biphenol ^b	CICF ₂ CI(CF ₂) ₃	(13c) 95% R_{F} OEt OEt R_{F} (17a) 86% (17b) 85%	(18a) 70% (18b) 76%		

*Overall yield after chromatography.

^bCyclization reactions carried out at 230 °C.

Preparations of enol ethers

A typical procedure was as follows. A mixture consisting of 2,2-dihydropolyfluoroalkanoate (5 mmol), phenol (6 mmol), Et_3N (20 mmol) and CH_3CN (5 mmol) was stirred at 60 °C for 5 h. The mixture was then extracted with ether and the ethereal layer washed with saturated NaCl solution. After removal of the solvent, the residue was purified by column chromatography using petroleum ether/ethyl acetate (20:1) as eluant to give the enol ether as an oily liquid.

Compound **3bd**: ¹H NMR (CCl₄) δ : 0.75–1.23 (3H, m, CH₂CH₃); 3.60–4.15 (2H, m, CH₂CH₃); 5.28, 6.07 (1H, olefinic proton for *E*- and *Z*-isomers); 6.82–7.33 (5H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 67.1 (2F, s, CF₂Cl); 112.0, 114.8 (2F, C=CCF₂ for *E*- and *Z*isomers); 118.8, 119.8 (2F, CF₂ for *E*- and *Z*-isomers) ppm. IR ν_{max} (cm⁻¹): 1735 (C=O); 1660 (C=C); 1590 (Ar); 1120–1220 (C–F). MS *m/z*: 376 (M⁺); 331 (M⁺ – OEt); 191 (M⁺ – C₃F₆Cl). (Analysis: Found: C, 44.42; H, 2.83; F, 30.34%. C₁₄H₁₁ClF₆O₃ requires: C, 44.64; H, 2.94; F, 30.26%).

Compound 3cd: ¹H NMR (CCl₄) δ : 0.71–1.18 (3H, m, CH₂CH₃); 3.54–4.15 (2H, m, CH₂CH₃); 5.26, 6.05 (1H, olefinic proton for *E*- and *Z*-isomers); 6.79–7.03 (5H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 67.1 (2F, s, CF₂Cl); 112.7, 115.5 (2F, C=CCF₂) for *E*- and *Z*isomers); 119.5–120.0 (6F, m, other 3×CF₂) ppm. IR $\nu_{max.}$ (cm⁻¹): 1730 (C=O); 1660 (C=C); 1600 (Ar); 1120–1220 (C–F). (Analysis: Found: C, 40.10; H, 2.33; F, 39.79%. C₁₆H₁₁ClF₁₀O₃ requires: C, 40.31; H, 2.33; F, 39.85%).

Compound **3be**: ¹H NMR (CDCl₃) δ : 0.94–1.48 (3H, m, CH₂CH₃); 3.84–4.20 (2H, m, CH₂CH₃); 6.38 (1H, s, olefinic proton); 6.82–7.51 (4H, AB pattern, J_{AB} =8.0 Hz, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.7 (2F, s, CF₂Cl); 113.3 (2F, s, C=CCF₂); 120.3 (2F, other CF₂) ppm. IR ν_{max} . (cm⁻¹): 1735 (C=O); 1670 (C=C); 1590 (Ar); 1130–1220 (C–F). MS *m/z*: 456 (M⁺+2); 454 (M^+) ; 409 (M⁺ – OEt); 269 (M⁺ – C₃F₆Cl). (Analysis: Found: C, 37.37; H, 2.13; F, 25.17%. C₁₄H₁₀BrClF₆O₃ requires: C, 36.91; H, 2.21; F, 25.12%).

Compound **3bf**: ¹H NMR (CCl₄) δ : 0.91–1.15 (3H, t, CH₂CH₃, ³J_{H-H}=6.9 Hz); 3.78–4.14 (2H, q, CH₂CH₃, ³J_{H-H}=6.9 Hz); 6.29 (1H, s, olefinic proton); 6.93–8.25 (AB pattern, 4H for Ar–H; J_{AB}=8.0 Hz) ppm. ¹⁹F NMR (CCl₄) δ : 66.5 (2F, s, CF₂Cl); 113.8 (2F, s, C=CCF₂); 118.8 (2F, s, other CF₂) ppm. IR ν_{max} . (cm⁻¹): 1730 (C=O); 1670 (C=C); 1620 (Ar); 1120–1200 (C-F). MS *m*/*z*: 442 (M⁺ + 1); 421 (M⁺); 376 (M⁺ – OEt); 330 (M⁺ – NO₂ – OEt); 236 (M⁺ – C₃F₆Cl). (Analysis: Found: C, 39.40; H, 2.09; N, 3.20; F, 26.41%. C₁₄H₁₀ClF₆NO₅ requires: C, 39.88; H, 2.39; N, 3.32; F, 27.03%).

Compound **3cf**: ¹H NMR (CCl₄) δ : 0.92–1.15 (3H, t, CH₂CH₃, ³J_{H-H}=6.9 Hz); 3.78–4.13 (2H, q, CH₂CH₃, ³J_{H-H}=6.9 Hz); 6.28 (1H, s, olefinic proton); 6.93–8.22 (AB pattern, 4H for Ar–H; J_{AB} =8.0 Hz) ppm. ¹⁹F NMR (CCl₄) δ : 67.1 (2F, s, CF₂Cl); 114.9 (2F, s, C=CCF₂); 119.3–120.5 (6F, m, other 3×CF₂) ppm. IR ν_{max} (cm⁻¹): 1730 (C=O); 1670 (C=C); 1620, 1600 (Ar); 1120–1230 (C–F). (Analysis: Found: C, 36.72; H, 1.96; N, 2.79; F, 37.17%. C₁₆H₁₀ClF₁₀NO₅ requires: C, 36.84; H, 1.93; N, 2.68; F, 36.42%).

Compound **3ag**: ¹H NMR (CCl₄) δ : 0.70–1.21 (3H, m, CH₂CH₃); 2.20 (3H, s, Ar–CH₃); 3.55–4.16 (2H, m, CH₂CH₃); 5.01, 6.00 (1H, olefinic proton for *E*- and *Z*-isomers); 6.46–7.18 (4H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 54.8, 57.6 (2F, CF₂Cl for *E*- and *Z*-isomers) ppm. IR ν_{max} (cm⁻¹): 1735 (C=O); 1670 (C=C); 1610, 1600 (Ar); 1110–1200 (C–F). (Analysis: Found: C, 53.62; H, 4.56; F, 12.75%). C₁₃H₁₃ClF₂O₃ requires: C, 53.71; H, 4.51; F, 13.07%).

Compound **3cg**: ¹H NMR (CDCl₃) δ : 0.92–1.37 (3H, m, CH₂CH₃); 2.32 (3H, s, Ar–CH₃); 3.78–4.35 (2H, m, CH₂CH₃); 5.46, 6.22 (1H, olefinic proton for *E*- and *Z*-isomers); 7.82–8.28 (4H, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 67.2 (2F, s, CF₂Cl); 112.2, 114.9 (2F, C=CCF₂ for *E*- and *Z*-isomers); 119.6–120.8 (6F, m, other 3×CF₂) ppm. IR ν_{max} (cm⁻¹): 1740 (C=O); 1670 (C=C); 1610 (Ar); 1110–1220 (C–F). MS *m/z*: 490 (M⁺); 445 (M⁺ – OEt); 205 (M⁺ – C₅F₁₀Cl). (Analysis: Found: C, 40.80; H, 2.95; F, 39.33%. C₁₇H₁₃ClF₁₀O₃ requires: C, 41.61; H, 2.67; F, 38.71%).

Compound **3bh**: ¹H NMR (CCl₄) δ : 0.86–1.31 (3H, m, CH₂CH₃); 3.71–4.26 (2H, m, CH₂CH₃); 5.42, 6.14 (1H, olefinic proton for *E*- and *Z*-isomers); 6.94–7.65 (9H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 66.4 (2F, s, CF₂Cl); 112.2, 115.1 (2F, C=CCF₂ for *E*- and *Z*isomers); 119.1, 120.2 (2F, CF₂ for *E*- and *Z*-isomers) ppm. IR ν_{max} (cm⁻¹): 1730 (C=O); 1670 (C=C); 1610 (Ar); 1120–1290 (C–F). (Analysis: Found: C, 52.89; H, 2.03; F, 28.70%. C₂₀H₁₅ClF₆O₃ requires: C, 53.16; H, 2.23; F, 28.03%). Compound **3ch**: ¹H NMR (CCl₄) δ : 0.83–1.29 (3H, m, CH₂CH₃); 3.68–4.22 (2H, m, CH₂CH₃); 5.40, 6.11 (1H, olefinic proton for *E*- and *Z*-isomers); 6.90–7.61 (9H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 67.0 (2F, s, CF₂Cl); 112.0, 114.8 (2F, C=CCF₂ for *E*- and *Z*isomers); 119.2–120.1 (6F, m, other 3×CF₂) ppm. IR ν_{max} (cm⁻¹) 1730 (C=O); 1660 (C=C); 1600 (Ar); 1120–1240 (C–F). MS *m/z*: 552 (M⁺); 507 (M⁺ – OEt). (Analysis: Found: C, 47.00; H, 2.53; F, 34.50%. C₂₂H₁₅ClF₁₀O₃ requires: C, 47.80; H, 2.74; F, 34.37%).

Compound **3aj**: ¹H NMR (CDCl₃) δ : 0.99–1.40 (3H, m, CH₂CH₃); 3.88–4.25 (2H, m, CH₂CH₃); 5.06, 6.26 (1H, olefinic proton for *E*- and *Z*-isomers); 6.86–7.49 (3H, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 55.3, 58.4 (2F, CF₂Cl for *E*- and *Z*-isomers) ppm. IR $\nu_{max.}$ (cm⁻¹): 1730 (C=O); 1670 (C=C); 1590 (Ar); 1100–1200 (C–F). MS *m/z*: 345 (M⁺ + 1); 344 (M⁺); 299 (M⁺ – OEt); 259 (M⁺ – CF₂Cl). (Analysis: Found: C, 41.49; H, 2.44; F, 10.96%. C₁₂H₉ClF₂O₃ requires: C, 41.71; H, 2.63; F, 11.00%).

Compound **3bj**: ¹H NMR (CDCl₃) δ : 0.92–1.15 (3H, t, CH₂CH₃, ³J_{H-H}=6.9 Hz); 3.73–4.08 (2H, q, CH₂CH₃, ³J_{H-H}=6.9 Hz); 6.14 (1H, olefinic proton); 6.73–7.40 (3H, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.5 (2F, s, CF₂Cl); 114.1 (2F, s, C=CCF₂); 119.1 (2F, s, other CF₂) ppm. IR ν_{max} (cm⁻¹): 1730 (C=O); 1670 (C=C); 1590 (Ar); 1120–1200 (C–F). MS *m*/*z*: 444 (M⁺); 409 (M⁺ – Cl); 399 (M⁺ – OEt); 374 (M⁺ – 2Cl); 259 (M⁺ – C₃F₆Cl). (Analysis: Found: C, 37.46; H, 1.87; F, 25.10%. C₁₄H₉ClF₆O₃ requires: C, 37.74; H, 2.04; F, 25.58%).

Compound 3ck: ¹H NMR (CCl₄) δ : 0.76–1.23 (3H, m, CH₂CH₃); 2.21 (3H, s, Ar–CH₃); 3.59–4.18 (2H, m, CH₂CH₃); 5.28, 6.03 (1H, olefinic proton for *E*- and *Z*-isomers); 6.60–7.20 (4H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 67.3 (2F, s, CF₂Cl); 111.3, 114.1 (2F, C=CCF₂ for *E*- and *Z*-isomers); 119.7–120.6 (6F, m, other 3×CF₂) ppm. IR ν_{max} (cm⁻¹): 1730 (C=O); 1670 (C=C); 1620, 1600 (Ar); 1100–1200 (C–F). MS *m*/*z*: 490 (M⁺); 445 (M⁺ – OEt); 205 (M⁺ – C₅F₁₀Cl). (Analysis: Found: C, 41.47; H, 2.61; F, 38.57%. C₁₇H₁₃ClF₁₀O₃ requires: C, 41.61; H, 2.67; F, 38.71%).

Compound **3am**: ¹H NMR (CDCl₃) δ : 0.88–1.38 (3H, m, CH₂CH₃); 2.25, 2.35 (3H, d, Ar–CH₃ for *E*- and *Z*-isomers); 3.73–4.38 (2H, m, CH₂CH₃); 5.13, 6.15 (1H, olefinic proton for *E*- and *Z*-isomers); 6.96–7.30 (4H, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 55.2, 58.5 (2F, C=CCF₂ for *E*- and *Z*-isomers) ppm. IR ν_{max} (cm⁻¹): 1730 (C=O); 1660 (C=C); 1600 (Ar); 1100–1210 (C–F). (Analysis: Found: C, 53.60; H, 4.37; F, 13.07%. C₁₃H₁₃ClF₂O₃ requires: C, 53.71; H, 4.51; F, 13.09%). Compound **3cm**: ¹H NMR (CCl₄) δ : 0.76–1.25 (3H,

Compound 3cm: 'H NMR (CCl₄) δ : 0.76–1.25 (3H, m, CH₂CH₃); 2.13, 2.16 (3H, d, Ar–CH₃ for *E*- and *Z*-isomers); 3.55–4.21 (2H, m, CH₂CH₃); 5.10, 5.98 (1H, olefinic proton for *E*- and *Z*-isomers); 6.75–7.11 (4H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 67.1 (2F, s, CF₂Cl); 112.0, 115.4 (2F, C=CCF₂ for *E*- and *Z*-isomers); 119.5–120.3 (6F, m, other 3×CF₂) ppm. IR $\nu_{max.}$ (cm⁻¹): 1740 (C=O); 1660 (C=C); 1590 (Ar); 1140–1210 (C–F). MS *m/z*: 490 (M⁺); 445 (M⁺ – OEt); 205 (M⁺ – C₅F₁₀Cl). (Analysis: Found: C, 42.02; H, 2.38; F, 38.23%. C₁₇H₁₃ClF₁₀O₃ requires: C, 41.61; H, 2.67; F, 38.71%).

Compound **5b**: ¹H NMR (CDCl₃) δ : 0.55–1.32 (3H, m, CH₂CH₃); 3.55–4.32 (2H, m, CH₂CH₃); 5.93, 6.33 (1H, olefinic proton for *E*- and *Z*-isomers); 6.90–8.33 (7H, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.5 (2F, s, CF₂Cl); 110.9, 114.3 (2F, C=CCF₂) for *E*- and *Z*isomers); 117.8, 119.1 (2F, CF₂ for *E*- and *Z*-isomers) ppm. IR ν_{max} (cm⁻¹): 1730 (C=O); 1660 (C=C); 1600 (Ar); 1100–1220 (C–F). MS *m/z*: 426 (M⁺); 381 (M⁺ – OEt). (Analysis: Found: C, 50.33; H, 3.22; F, 26.84%. C₁₈H₁₃ClF₆O₃ requires: C, 50.66; H, 3.07; F, 26.71%).

Compound 7a: ¹H NMR (CDCl₃) δ : 0.64–1.23 (3H, m, CH₂CH₃); 3.57–4.16 (2H, m, CH₂CH₃); 5.26, 6.27 (1H, olefinic proton for *E*- and *Z*-isomers); 7.20–7.78 (7H, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 55.3, 57.9 (2F, CF₂Cl for *E*- and *Z*-isomers) ppm. IR ν_{max} . (cm⁻¹): 1730 (C=O); 1660 (C=C); 1600 (Ar); 1140–1240 (C–F). MS *m/z*: 326 (M⁺); 281 (M⁺ – OEt); 241 (M⁺ – CF₂Cl). (Analysis: Found: C, 58.59; H, 4.59; F, 11.64%. C₁₆H₁₃ClF₂O₃ requires: C, 58.82; H, 4.01; F, 11.63%).

Compound 7b: ¹H NMR (CDCl₃) δ : 0.82–1.23 (3H, m, CH₂CH₃); 3.70–43.23 (2H, m, CH₂CH₃); 5.50, 6.32 (1H, olefinic proton for *E*- and *Z*-isomers); 7.26–7.78 (7H m, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.5 (2F, s, CF₂Cl); 111.4, 114.0 (2F, C=CCF₂ for *E*- and *Z*isomers); 118.0, 119.0 (2F, CF₂ for *E*- and *Z*-isomers) ppm. IR ν_{max} (cm⁻¹): 1730 (C=O); 1660 (C=C); 1600 (Ar); 1120–1220 (C–F). MS *m/z*: 426 (M⁺); 381 (M⁺ – OEt); 241 (M⁺ – C₃F₆Cl). (Analysis: Found: C, 50.92; H, 2.83; F, 26.91%. C₁₈H₁₃ClF₆O₃ requires: C, 50.66; H, 3.07; F, 26.71%).

Compound **9b**: ¹H NMR (CDCl₃) δ : 0.95–1.22 (6H, m, 2×CH₂CH₃); 3.82–4.23 (4H, m, 2×CH₂CH₃); 5.41, 6.22 (2H, olefinic proton for *E*- and *Z*-isomers); 6.96, 7.06 (4H, d, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.8 (4F, s, 2×CF₂Cl); 111.5, 118.0 (4F, 2×C=CCF₂ for *E*- and *Z*-isomers); 118.4, 119.5 (4F, 2×CF₂ for *E*- and *Z*-isomers) ppm. IR ν_{max} (cm⁻¹): 1730 (C=O); 1660 (C=C); 1600 (Ar); 1120–1220 (C–F). MS *m/z*: 674 (M⁺); 629 (M⁺ – OEt); 583 (M⁺ – OEt – EtOH). (Analysis: Found: C, 39.42; H, 2.45; F, 34.24%. C₂₂H₁₆Cl₂F₁₂O₆ requires: C, 39.13; H, 2.39; F, 33.76%).

Compound **11b**: ¹H NMR (CDCl₃) δ : 0.90–1.32 (6H, m, 2×CH₂CH₃); 3.40 (s, CH₂CO in imine); 3.81–4.30 (4H, m, 2×CH₂CH₃); 5.35, 5.41, 6.18 (olefinic proton); 6.70–7.20 (4H, m, Ar–H); 9.32 (NH in enamine) ppm. ¹⁹F NMR (CDCl₃) δ : 66.6 (4F, s, 2×CF₂Cl); 102.0, 107.3, 114.3 (4F, N=CCF₂ and C=CCF₂); 119.0 (4F, s, other $2 \times CF_2$) ppm. IR $\nu_{max.}$ (cm⁻¹): 3300 (NH); 1730 (C=O); 1670 (C=N); 1660 (C=C); 1620 (Ar); 1100–1280 (C–F). MS *m/z*: 674 (M⁺+1); 673 (M⁺); 628 (M⁺ – OEt); 582 (M⁺ – OEt – EtOH); 488 (M⁺ – C₃F₆Cl); 442 (M⁺ – EtOH – C₃F₆Cl). (Analysis: Found: C, 39.04; H, 2.82; N, 2.12; F, 33.82%. C₂₂H₁₇Cl₂F₁₂NO₅ requires: C, 39.19; H, 2.54; N, 2.08; F, 33.81%).

Compound 13b: ¹H NMR (CDCl₃) δ : 0.87–1.28 (6H, m, 2×CH₂CH₃); 3.72–4.12 (4H, m, 2×CH₂CH₃); 5.40, 6.14 (2H, olefinic proton for *E*-and *Z*-isomers); 6.56–7.43 (4H, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.5 (4F, s, 2×CF₂Cl); 111.4, 114.3 (4F, 2×C=CCF₂ for *E*- and *Z*-isomers); 118.2, 119.2 (4F, other 2×CF₂ for *E*- and *Z*-isomers) ppm. IR ν_{max} (cm⁻¹): 1740 (C=O); 1670 (C=C); 1620, 1600 (Ar); 1110–1240 (C–F). MS *m/z*: 674 (M⁺); 629 (M⁺ – OEt); 583 (M⁺ – OEt – EtOH). (Analysis: Found: C, 39.34; H, 2.27; F, 34.52%. C₂₂H₁₆Cl₂F₁₂O₆ requires: C, 39.13; H, 2.39; F, 33.76%).

Compound 15a: ¹H NMR (CDCl₃) δ : 0.88–1.40 (6H, m, 2×CH₂CH₃); 1.61 (6H, s, 2×CH₃); 3.66–4.29 (4H, m, 2×CH₂CH₃); 5.26, 6.19 (2H, 2×olefinic proton for *E*- and *Z*-isomers); 6.90–7.31 (8H, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 55.4, 58.2 (4F, 2×CF₂Cl for *E*- and *Z*-isomers) ppm. IR ν_{max} (cm⁻¹): 1730 (C=O); 1660 (C=C); 1600 (Ar); 1130–1240 (C–F). MS *m/z*: 592 (M⁺); 577 (M⁺ – CH₃). (Analysis: Found: C, 54.10; H, 4.19; F, 13.03%. C₂₇H₂₆Cl₂F₄O₆ requires: C, 54.65; H, 4.42; F, 12.81%).

Compound 15c: ¹H NMR (CCl₄) δ : 0.82–1.12 (6H, m, 2×CH₂CH₃); 1.59 (6H, s, 2×CH₃); 3.69–4.26 (4H, m, 2×CH₂CH₃); 5.40, 6.11 (2H, 2×olefinic proton for *E*- and *Z*-isomers); 6.90–7.29 (8H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 67.1 (4F, s, 2×CF₂Cl); 112.0, 114.9 (4F, 2×C=CCF₂ for *E*- and *Z*-isomers); 118.2–121.0 (12F, m, other 2×3×CF₂) ppm. IR ν_{max} (cm⁻¹): 1740 (C=O); 1670 (C=C); 1610 (Ar); 1110–1220 (C–F). (Analysis: Found: C, 42.48; H, 2.36; F, 38.02%. C₃₅H₂₆Cl₂F₂₀O₆ requires: C, 42.32; H, 2.64; F, 38.25%).

Compound 17a: ¹H NMR (CCl₄) δ : 0.87–1.35 (6H, m, 2×CH₂CH₃); 3.75–4.20 (4H, m, 2×CH₂CH₃); 5.17, 6.16 (2H, 2×olefinic proton for *E*- and *Z*-isomers); 5.98–7.63 (8H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 55.6, 58.1 (4F, s, 2×CF₂Cl for *E*- and *Z*-isomers) ppm. IR ν_{max} (cm⁻¹): 1730 (C=O); 1660 (C=C); 1110–1240 (C–F). MS *m/z*: 551 (M⁺); 505 (M⁺ – EtOH); 459 (M⁺ – 2EtOH). (Analysis: Found: C, 52.07; H, 3.37; F, 13.77%. C₂₄H₂₀Cl₂F₄O₆ requires: C, 52.59; H, 3.66; F, 13.78%).

Compound 17b: ¹H NMR (CCl₄) δ : 0.82–1.32 (6H, m, 2×CH₂CH₃); 3.65–4.18 (4H, m, 2×CH₂CH₃); 5.44, 6.19 (2H, 2×olefinic proton for *E*- and *Z*-isomers); 6.93–7.61 (8H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 66.6 Z(4F, s, 2×CF₂Cl); 111.4, 114.2 (4F, 2×C=CCF₂ for *E*- and *Z*-isomers); 118.1, 119.1 (4F, other 2×CF₂ for *E*- and *Z*-isomers) ppm. IR ν_{max} (cm⁻¹): 1740 (C=O); 1670 (C=C); 1600 (Ar); 1120–1210 (C–F). (Analysis: Found: C, 44.56; H, 2.47; F, 30.15%. C₂₈H₂₀Cl₂F₁₂O₆ requires: C, 44.76; H, 2.68; F, 30.34%).

Preparation of 2-(F-alkyl)-substituted chromones

A typical procedure was as follows. Enol ether (1 g) and polyphosphoric acid (PPA) (20 g) were stirred together at 170 °C for 10 h. After cooling to room temperature, the mixture was neutralized with aqueous 3 N NaOH and extracted with ether. The organic layer was washed with saturated NaCl solution. Removal of the solvent followed by column chromatography using petroleum ether/ethyl acetate (20:1) as eluant gave the pure fluoroalkylated chromones.

Compound **4bd**: M.p. 63–65 °C. ¹H NMR (CDCl₃) δ : 6.77 (1H, s, olefinic proton); 7.48–8.29 (4H, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.9 (2F, s, CF₂Cl); 116.1 (2F, s, C=CCF₂); 119.8 (2F, s, other CF₂) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1640 (C=C); 1600 (Ar); 1100–1220 (C–F). MS *m/z*: 330 (M⁺); 295 (M⁺ – Cl); 267 (M⁺ – CO – Cl); 167 (M⁺ – C₂F₄Cl – CO). (Analysis: Found: C, 43.62; H, 1.59; F, 33.95%. C₁₂H₅ClF₆O₂ requires: C, 43.59; H, 1.52; F, 34.48%).

Compound 4cd: M.p. 42–44 °C. ¹H NMR (CCl₄) δ : 6.60 (1H, s, olefinic proton); 7.23–8.15 (4H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 66.9 (2F, s, CF₂Cl); 116.9 (2F, s, C=CCF₂); 119.4–121.3 (6F, m, other 3×CF₂) ppm. IR ν_{max} (cm⁻¹): 1680 (C=O); 1660 (C=C); 1600 (Ar); 1120–1220 (C–F). MS *m*/*z*: 430 (M⁺); 195 (M⁺ – C₄F₈Cl); 167 (M⁺ – C₄F₈Cl – CO). (Analysis: Found: C, 39.07; H, 1.16; F, 43.90%. C₁₄H₅ClF₁₀O₂ requires: C, 39.05; H, 1.17; F, 44.12%).

Compound **4be**: M.p. 60–62 °C. ¹H NMR (CCl₄) δ : 6.63 (1H, s, olefinic proton); 7.27–7.86 (2H, AB pattern, C₇–H, C₈–H, J_{AB}=9.0 Hz); 8.21 (1H, s, C₅–H) ppm. ¹⁹F NMR (CCl₄) δ : 67.0 (2F, s, CF₂Cl); 116.1 (2F, s, C=CCF₂); 119.8 (2F, s, other CF₂) ppm. IR ν_{max} . (cm⁻¹): 1670 (C=O); 1640 (C=C); 1600 (Ar); 1120–1220 (C–F). MS *m*/*z*: 410 (M⁺+2); 408 (M⁺); 247 (M⁺ – C₂F₄Cl – CO). (Analysis: Found: C, 35.17; H, 1.12; F, 27.03%. C₁₂H₄BrClF₆O₂ requires: C, 35.20; H, 0.98; F, 27.84%).

Compound **4bf**: M.p. 70–72 °C. ¹H NMR (CCl₄) δ : 6.72 (1H, s, olefinic proton); 7.59–8.63 (2H, AB pattern, C₇–H, C₈–H, J_{AB}=9.0 Hz); 8.87 (1H, s, C₅–H) ppm. ¹⁹F NMR (CCl₄) δ : 66.8 (2F, s, CF₂Cl); 118.9 (2F, s, C=CCF₂); 120.4 (2F, other CF₂) ppm. IR ν_{max} . (cm⁻¹): 1680 (C=O); 1650 (C=C); 1620 (Ar); 1120–1200 (C–F). MS *m*/*z*: 375 (M⁺); 345 (M⁺ – NO); 329 (M⁺ – NO₂); 166 (M⁺ – C₂F₄Cl – CO). (Analysis: Found: C, 39.11; H, 1.34; N, 3.60; F, 30.20%. C₁₄H₁₀ClF₆NO₅ requires: C, 38.37; H, 1.07; N, 3.73; F, 30.35%).

Compound 4cf: M.p. 99–101 °C. ¹H NMR (CDCl₃) δ: 6.86 (1H, s, olefinic proton); 7.66–8.21 (2H, AB pattern, C₇–H, C₈–H, J_{AB} =9.0 Hz); 9.07 (1H, s, C₅–H) ppm. ¹⁹F NMR (CDCl₃) δ : 67.3 (2F, s, CF₂Cl); 116.8 (2F, s, C=CCF₂); 119.1–121.1 (6F, m, other 3×CF₂) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1640 (C=C); 1620, 1590 (Ar); 1130–1210 (C–F). (Analysis: Found: C, 35.49; H, 1.23; N, 3.13; F, 39.04%. C₁₄H₄ClF₁₀NO₄ requires: C, 35.35; H, 0.85; N, 2.94; F, 39.94%).

Compound **4ag**: M.p. 74–76 °C. ¹H NMR (CCl₄) δ : 2.42 (3H, s, Ar–CH₃); 6.52 (1H, s, olefinic proton); 7.38 (2H, s, C₇–H, C₈–H); 7.85 (1H, s, C₅–H) ppm. ¹⁹F NMR (CCl₄) δ : 59.1 (2F, s, CF₂Cl) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1640 (C=C); 1620 (Ar); 1130–1220 (C–F). MS *m*/*z*: 244 (M⁺); 209 (M⁺ – Cl); 181 (M⁺ – Cl – CO). (Analysis: Found: C, 53.50; H, 2.79; F, 15.92%. C₁₁H₇ClF₂O₂ requires: C, 54.00; H, 2.88; F, 15.53%).

Compound 4cg: M.p. 63–65 °C. ¹H NMR (CCl₄) δ : 2.45 (3H, s, Ar–CH₃); 6.61 (1H, s, olefinic proton); 7.41 (2H, s, C₇–H, C₈–H); 7.93 (1H, s, C₅–H) ppm. ¹⁹F NMR (CCl₄) δ : 66.9 (2F, s, CF₂Cl); 116.9 (2F, s, C=CCF₂); 119.1–121.2 (6F, m, other 3×CF₂) ppm. IR $\nu_{max.}$ (cm⁻¹): 1670 (C=O); 1640 (C=C); 1620 (Ar); 1120–1220 (C–F). (Analysis: Found: C, 40.55; H, 1.57; F, 42.25%. C₁₅H₇ClF₁₀O₂ requires: C, 40.52; H, 1.59; F, 42.73%).

Compound **4bh**: M.p. 102–104 °C. ¹H NMR (CDCl₃) δ : 6.87 (1H, s, olefinic proton); 7.52–8.19 (7H, m, Ar–H); 8.52 (1H, s, C₅–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.9 (2F, s, CF₂Cl); 116.2 (2F, s, C=CCF₂); 119.9 (2F, s, other CF₂) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1620 (Ar); 1120–1220 (C–F). MS *m/z*: 406 (M⁺); 243 (M⁺ – C₂F₄Cl–CO). (Analysis: Found: C, 52.89; H, 2.03; F, 28.70%. C₁₈H₉ClF₆O₂ requires: C, 53.16; H, 2.23; F, 28.03%).

Compound **4ch**: M.p. 128–130 °C. ¹H NMR (CDCl₃) δ : 6.82 (1H, s, olefinic proton); 7.46–8.15 (7H, m, Ar–H); 8.47 (1H, s, C₅–H) ppm. ¹⁹F NMR (CDCl₃) δ : 67.2 (2F, s, CF₂Cl); 116.7 (2F, s, C=CCF₂); 119.1–121.2 (6F, m, other 3×CF₂) ppm. IR ν_{max} . (cm⁻¹): 1670 (C=O); 1620 (Ar); 1140–1220 (C–F). MS *m/z*: 506 (M⁺); 243 (M⁺ – C₄F₈Cl – CO). (Analysis: Found: C, 47.11; H, 1.61; F, 38.35%. C₂₀H₉ClF₁₀O₂ requires: C, 47.40; H, 1.79; F, 37.49%).

Compound **4aj**: M.p. 65–67 °C. ¹H NMR (CCl₄) δ : 6.63 (1H, s, olefinic proton); 7.76 (1H, s, C₇–H); 8.00 (1H, s, C₅–H) ppm. ¹⁹F NMR (CCl₄) δ : 58.9 (2F, s, CF₂Cl) ppm. IR $\nu_{max.}$ (cm⁻¹): 1680 (C=O); 1640 (C=C); 1600 (Ar); 1120–1220 (C–F). MS *m/z*: 298 (M⁺); 263 (M⁺ – Cl); 235 (M⁺ – CO – Cl). (Analysis: Found: C, 40.20; H, 1.12; F, 12.68%. C₁₀H₃Cl₃F₂O₂ requires: C, 40.10; H, 1.01; F, 12.69%).

Compound **4bj**: M.p. 54–56 °C. ¹H NMR (CDCl₃) δ : 6.81 (1H, s, olefinic proton); 7.81 (1H, s, C₇–H); 8.09 (1H, s, C₅–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.9 (2F, s, CF₂Cl); 116.0 (2F, s, C=CCF₂); 119.7 (2F, s, other CF₂) ppm. IR $\nu_{max.}$ (cm⁻¹): 1670 (C=O); 1600 (Ar); 1120–1200 (C–F). (Analysis: Found: C, 36.42; H, 0.94; F, 28.60%. C₁₂H₃Cl₃F₆O₂ requires: C, 36.08; H, 0.76; F, 28.53%).

Compound **4ck1**: M.p. 41–43 °C. ¹H NMR (CCl₄) δ : 2.72 (3H, s, Ar–CH₃); 6.54 (1H, s, olefinic proton); 7.03–7.58 (3H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 67.1 (2F, s, CF₂Cl); 117.3 (2F, s, C=CCF₂); 119.4–121.5 (6F, m, other 3×CF₂) ppm. IR ν_{max} . (cm⁻¹): 1670 (C=O); 1610 (Ar); 1120–1220 (C–F). MS *m/z*: 444 (M⁺); 181 (M⁺ – C₄F₈Cl – CO). (Analysis: Found: C, 40.35; H, 1.69; F, 42.73%. C₁₅H₇ClF₁₀O₂ requires: C, 40.52; H, 1.59; F, 42.73%).

Compound **4ck2**: M.p. 70–72 °C. ¹H NMR (CCl₄) δ : 2.43 (3H, s, Ar–CH₃); 6.58 (1H, s, olefinic proton); 7.15–8.06 (2H, AB pattern, C₅–H, C₆–H, J_{AB}=8.0 Hz); 7.28 (1H, s, C₈–H) ppm. ¹⁹F NMR (CCl₄) δ : 66.9 (2F, s CF₂Cl); 116.8 (2F, s, C=CCF₂); 119.3–121.4 (6F, m, other 3×CF₂) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1610 (Ar); 1120–1220 (C–F). MS *m/z*: 444 (M⁺); 181 (M⁺ – C₄F₈Cl–CO). (Analysis: Found: C, 40.81; H, 1.45; F, 42.97%. C₁₅H₇ClF₁₀O₂ requires: C, 40.52; H, 1.59; F, 42.73%).

Compound 4am: M.p. 52–54 °C. ¹H NMR (CDCl₃) δ : 2.52 (3H, s, Ar–CH₃); 6.74 (1H, s, olefinic proton); 7.32–8.19 (3H, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 59.1 (2F, s, CF₂Cl) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1610, 1600 (Ar); 1130–1230 (C–F). (Analysis: Found: C, 53.66; H, 3.06; F, 15.17%. C₁₁H₇ClF₂O₂ requires: C, 54.00; H, 2.88; F, 15.53%).

Compound **4cm**: M.p. 51–53 °C. ¹H NMR (CCl₄) δ : 2.40 (3H, s, Ar–CH₃); 6.61 (1H, s, olefinic proton); 7.15–8.01 (3H, m, Ar–H) ppm. ¹⁹F NMR (CCl₄) δ : 67.2 (2F, s, CF₂Cl); 116.9 (2F, s, C=CCF₂); 119.1–121.5 (6F, m, other 3×CF₂) ppm. IR ν_{max} . (cm⁻¹): 1670 (C=O); 1640 (C=C); 1610, 1590 (Ar); 1110–1220 (C–F). MS *m*/*z*: 444 (M⁺); 409 (M⁺ – Cl); 209 (M⁺ – C₄F₈Cl); 181 (M⁺ – C₄F₈Cl – CO). (Analysis: Found: C, 40.66; H, 1.29; F, 42.11%. C₁₅H₇ClF₁₀O₂ requires: C, 40.52; H, 1.59; F, 42.73%).

Compound **6b**: M.p. 130–132 °C. ¹H NMR (CDCl₃) δ : 6.89 (1H, s, olefinic proton); 7.60–8.58 (6H, m, Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.8 (2F, s, CF₂Cl); 116.1 (2F, s, C=CCF₂); 120.1 (2F, s, other CF₂) ppm. IR ν_{max} . (cm⁻¹): 1660 (C=O); 1600 (Ar); 1120–1200 (C–F). MS *m/z*: 380 (M⁺); 345 (M⁺ – Cl); 217 (M⁺ – C₂F₄Cl). (Analysis: Found: C, 50.45; H, 1.79; F, 29.87%. C₁₆H₇ClF₆O₂ requires: C, 50.48; H, 1.85; F, 29.94%).

Compound 8a: M.p. 102–104 °C. ¹H NMR (CCl₄) δ : 6.62 (1H, s, olefinic proton); 7.30–8.05 (5H, m, other Ar–H); 9.75–9.88 (1H, d, ${}^{3}J_{H-H}$ =7.8 Hz, C₁₀–H) ppm. ¹⁹F NMR (CCl₄) δ : 58.7 (2F, s, CF₂Cl) ppm. IR $\nu_{max.}$ (cm⁻¹): 1670 (C=O); 1640 (C=C); 1600 (Ar); 1130–1240 (C–F). MS *m/z*: 280 (M⁺); 245 (M⁺ – Cl); 217 (M⁺ – CO – Cl). (Analysis: Found: C, 59.61; H, 2.62; F, 13.13%. $C_{14}H_7ClF_2O_2$ requires: C, 59.91; H, 2.51; F, 13.54%).

Compound **8b**: M.p. 100–102 °C. ¹H NMR (CDCl₃) δ : 6.99 (1H, s, olefinic proton); 7.50–8.30 (5H, m, other Ar–H); 9.92–10.05 (1H, d, C₁₀–H, ³J_{H–H}=7.8 Hz) ppm. ¹⁹F NMR (CDCl₃) δ : 66.8 (2F, s, CF₂Cl); 116.1 (2F, s, C=CCF₂); 120.0 (2F, s, other CF₂) ppm. IR $\nu_{max.}$ (cm⁻¹): 1670 (C=O); 1640 (C=C); 1590 (Ar); 1120–1190 (C–F). MS *m/z*: 380 (M⁺); 217 (M⁺– C₂F₄Cl–CO). (Analysis: Found: C, 50.62; H, 1.76; F, 29.92%. C₁₆H₇ClF₆O₂ requires: C, 50.48; H, 1.85; F, 29.94%).

Compound **10b**: M.p. 188–190 °C. ¹H NMR (CDCl₃) δ : 6.91 (2H, s, 2×olefinic proton); 7.85 (2H, s, 2×Ar–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.8 (4F, s, 2×CF₂Cl); 115.6 (4F, s, 2×C=CCF₂); 119.6 (4F, s, other 2×CF₂) ppm. IR ν_{max} . (cm⁻¹): 1670 (C=O); 1650 (C=C); 1600 (Ar); 1120–1200 (C–F). MS *m*/*z*: 583 (M⁺+1); 582 (M⁺); 547 (M⁺ – Cl); 419 (M⁺ – C₂F₄Cl – CO); 256 (M⁺ – 2×C₂F₄Cl – 2CO). (Analysis: Found: C, 37.06; H, 0.54; F, 39.09%. C₁₈H₄Cl₂F₁₂O₄ requires: C, 37.08; H, 0.69; F, 39.10%).

Compound 12b: M.p. 147–149 °C. ¹H NMR (CDCl₃) δ : 7.11, 7.39 (2H, olefinic protons); 7.77–8.64 (2H, AB pattern, Ar–H, J_{AB} =9.0 Hz) ppm. ¹⁹F NMR (CDCl₃) δ : 66.8, 67.3 (4F, 2×CF₂Cl); 112.8, 115.8 (4F, N=CCF₂), C=CCF₂); 119.2–119.5 (4F, d, other 2×CF₂) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1630 (C=C); 1600 (Ar); 1120–1220 (C–F). MS *m/z*: 581 (M⁺); 446 (M⁺ – C₂F₄Cl); 418 (M⁺ – C₂F₄Cl – CO); 283 (M⁺ – 2× C₂F₄Cl – CO). (Analysis: Found: C, 37.16; H, 0.74; N, 2.31; F, 37.54%). C₁₈H₅Cl₂F₁₂NO₃ requires: C, 37.14; H, 0.87; N, 2.41; F, 39.16%).

Compound **14b**: M.p. 136–138 °C. ¹H NMR (CDCl₃) δ : 6.82 (1H, s, C₉–H); 6.93 (1H, s, C₃–H); 7.55–8.66 (2H, AB pattern, AR–H, J_{AB} =9.0 Hz) ppm. ¹⁹F NMR (CDCl₃) δ : 67.2 (4F, s, 2×CF₂Cl); 116.3 (4F, s, 2×C=CCF₂); 119.9 (4F, s, other 2×CF₂) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1650 (C=C); 1600 (Ar); 1100–1220 (C–F). MS *m/z*: 582 (M⁺); 419 (M⁺– C₂F₄Cl–CO). (Analysis: Found: C, 37.53; H, 0.55; F, 39.22%. C₁₈H₄Cl₂F₁₂O₄ requires: C, 37.08; H, 0.69; F, 39.10%).

Preparation of fluoroalkylated bichromones 18a, b and bischromones 16a, c

A typical procedure was as follows: Enol ether (1 g) (17a, b or 15a, c) and PPA (25 g) were stirred together at 230 °C for 10 h. After cooling to room temperature, the mixture was neutralized with aqueous 3 N NaOH and extracted with CHCl₃. The organic layer was washed with saturated NaCl solution. Removal of the solvent followed by column chromatography using CHCl₃ as eluant gave the pure fluoroalkylated bichromones 18a, b or bischromones 16a, c, respectively.

Compound 16a: M.p. 87–89 °C. ¹H NMR (CDCl₃) δ : 1.82 (6H, s, 2×CH₃); 6.72 (2H, s, 2×olefinic proton); 7.50 (4H, s, other Ar–H); 8.22 (2H, s, C₅–H, C₅–H) ppm. ¹⁹F NMR (CDCl₃) δ : 59.2 (4F, s, 2×CF₂Cl) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1620 (Ar); 1150–1240 (C–F). MS *m/z*: 500 (M⁺); 485 (M⁺ – CH₃). (Analysis: Found: C, 55.45; H, 2.43; F, 14.47%. C₂₃H₁₄Cl₂F₄O₄ requires: C, 55.11; H, 2.82; F, 15.16%).

Compound **16c**: M.p. 120–122 °C. ¹H NMR (CDCl₃) δ : 1.86 (6H, s, 2×CH₃); 6.85 (2H, s, 2×olcfinic proton); 7.54 (4H, s, other Ar–H); 8.28 (2H, s, C₅–H, C₅–H) ppm. ¹⁹F NMR (CDCl₃) δ : 67.0 (4F, s, 2×CF₂Cl); 117.1 (4F, s, 2×C=CCF₂); 119.6–121.4 (12F, m, other 2×3×CF₂) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1610 (Ar); 1110–1220 (C–F). (Analysis: Found: C, 41.39; H, 1.28; F, 41.62%. C₃₁H₁₄Cl₂F₂₀O₄ requires: C, 41.31; H, 1.57; F, 41.69%).

Compound **18a**: M.p. 234–236 °C. ¹H NMR (CDCl₃) δ : 6.72 (2H, s, 2×olefinic proton); 7.63–8.20 (4H, AB pattern, other Ar–H, J_{AB} =9.0 Hz); 8.51 (2H, s, C₅–H, C₅–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.8 (4F, s, 2×CF₂Cl) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1610 (Ar); 1140–1230 (C–F). MS m/z: 458 (M⁺); 395 (M⁺ – Cl–CO). (Analysis: Found: C, 52.01; H, 1.85; F, 15.61%. C₂₀H₈Cl₂F₄O₂ requires: C, 52.31; H, 1.76; F, 16.55%).

Compound 18b: M.p. 203–205 °C. ¹H NMR (CDCl₃) δ : 6.83 (2H, s, 2×olefinic proton); 7.61–8.20 (4H, AB pattern, other Ar–H, J_{AB} =9.0 Hz); 8.51 (2H, s, C₅–H, C₅–H) ppm. ¹⁹F NMR (CDCl₃) δ : 66.8 (4F, s, 2×CF₂Cl); 116.3 (4F, s, $2 \times C = CCF_2$); 120.1 (4F, s, other $2 \times CF_2$) ppm. IR ν_{max} (cm⁻¹): 1670 (C=O); 1610 (Ar); 1110–1210 (C–F). (Analysis: Found: C, 43.56; H, 1.09; F, 34.23%. C₂₄H₈Cl₂F₁₂O₄ requires: C, 43.73; H, 1.22; F, 34.85%).

References

- 1 M.J. Silvester, Aldrichimica Acta, 24 (1991) 31.
- 2 R.D. Chambers and C.R. Sargent, Adv. Heterocycl. Chem., 28 (1981) 1.
- 3 R. Filler and Y. Kobayashi (eds.), *Biomedicinal Aspects of Fluorine Chemistry*, Kodansha, Tokyo, 1982.
- 4 R.E. Banks (ed.), *Preparation, Properties and Industrial Application of Organofluorine Compounds*, Ellis Horwood, Chichester, 1982.
- 5 J.T. Welch, Tetrahedron, 43 (1987) 3123.
- 6 G.P. Ellis (ed.), Chromenes, Chromanones and Chromones, John Wiley & Sons, New York, 1977.
- 7 V.P. Khylia, L.G Grishko and T.N. Sokolova, *Khim. Geterotsikl.* Soedin., 12 (1975) 1593.
- 8 V.P. Khilya, L.G. Grishko, I. Shevshenko, L.I. Barvinok, V.A. Dimovich and V. Szabo, *Khim. Geterotsikl. Soedin.*, 9 (1973) 1202.
- 9 W.B. Whalley, J. Chem. Soc., (1951) 3235.
- 10 V. Bayer, R.E. Pastor and A.R. Cambon, J. Fluorine Chem., 20 (1982) 497, and references cited therein.
- 11 W.-Y. Huang, Y.-S. Liu and L. Lu, Chin. Chem. Lett., 3 (1992) 583.
- 12 W.-Y. Huang, L. Lu and Y.-F. Zhang, Chin. J. Chem., 8 (1990) 281.
- 13 G.A. Reynolds and J.A. Van Allan, J. Heterocycl. Chem., 6 (1969) 375.